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On transforme le vecteur Une matrice M est une
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siA = all est de dimension (1x1) :

SiA =[aij] est de dimension (2x2) :

siA =[aij] est de dimension (3x3) :

det(A) = ap
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Remarque:

En élasticité, on se limite aux matrices d’ordre 2 et de dimension (3x3), (n = 3).
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ﬁ Egalité A=B : aij= bij \

* Transposée B=A": bij= aji

* Multiplication par un scalaire B=mA : bij=mai;

* Multiplication matricielle

\ Inversion matricielle A linversede A: AA =1 j

1. AB#ZBA \
2. det(AB) = det(A)det(B)

3. (AB)T=BT AT

4. det(mA)# mdet(A)
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/ Remarques:
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cos(f) sin(O)
—sin(f) cos(A)

/ N x" = xcosf + ysinf — {I’} _

r y' = ycosf — xsinf v

0

y© ouencore, en plus compacte : V= AV

A est la matrice de rotation de repeére, elle contient
les cosinus directeurs des nouveaux axes par rapport

" N\e 1° aux anciens axes. Si on note les vecteurs unitaires
¢ des axes originaux el et e2, ceux des nouveaux axes
o e'lete’2alors:

[ > X .= o .
\ ¢ X aij =€ ej /
\

" Cas de deux rotation:
{.r”}_ cos(¢p)  sin(¢p) {;}
i y
N

—sin(¢p) cos(¢p)
J
/" Inverse d’une rotation N
{x} _ cos(—0) sin(—8) {.x’} _[cos(B) —sin(B)
y Vi

—sin(—60) cos(-6) sin(A) cos(0)
\ L'inverse d’'une matrice de rotation est égale a sa transposée. /

cos(B +¢) sin(0+ )
—sin(@+¢) cos(@ + )

cos(@) sin(@)]| [x X"
—sin(f) ms[a)Hy} — {y”}_

x
{y,} v=cCcVv' : Cc=AT
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La rotation 2D fait changer les coordonnées x et vy, la *"': C?S(B) sin(0) 0] (x
coordonnées z reste telle qu’elle (z' = z). On dit que la rotation .VF = | —sin(0) cos(@) 0| <y
2D se fait par rapport a I'axe Z et on écrit le changement de Z 0 0 1] {z
coordonnées en incluant z comme suit : V =A,V
1 0 0 \
A, =10 cos(f,) sin(f,)
De méme on écrit les matrices de rotations d'angles 0x et 8y par 0 —sin(@y) cos(Oy)
rapport aux axes X et Y comme suit :
cos(@y) 0 sin(@y)
Ay = 0 10
| —sin(fy) 0 cos(fy) ] /
Remarque: h
Une rotation Ax par rapport a X suivie d’'une rotation Ay par
AyAy # AcAy

rapport a Y est différente de la rotation Ay suivie de la
rotation Ax :

N




/7

Ineaire

-
@)
=
qu)
=
-
@)
Y
7p)
c
O

Gne transformation linéaire est une transformation dans laquelle chague nouvelle variable est une combiinaiisowm\
linéaire d’anciennes variables

J_ + b . r_ + d x'r _ a b X ;
X =ax+by ; y=cx+a) VI le dlly V =MV
\Si x' est perpendiculaire 3 y' et x'? + y'2 = x2 + y? alors cette transformation est dite orthogonale. /
4 )
Remarque: La longueur d’un vecteur ne change pas avec la rotation d’axes, alors la rotation d’axes est une
transformation orthogonale.
N J
~

Note: Une transformation orthogonale est une transformation qui préserve les angles et les longueurs.

La matrice M d’une transformation orthogonale est une matrice orthogonale ce qui donne :

L M'=M' )
/ = xtayt a’+c?=1 \
= (ax+Dby)* +(cx +dy)* =>  P+d’=1
Démonstration: = (@ + c*)x* + (b* + d*) y* +2(ab + cd)xy ab+cd=0
a clla b a’+c® ab+cd] [1 0 T
b dllc d| |ab+cd b*+d? [D 1] !

N




Dans une transformation linéaire, un vecteur V d’origine (0,0) et d’extrémité (x, y) se transforme en un
vecteur V ' d'origine (0,0) et d'extrémité (x’, y'), il subit alors une rotation et un allongement (ou
rétrécissement).

La transformation engendre un changement de direction et un changement de module des vecteurs. Si on
veut s’intéresser aux vecteurs qui ne subissent pas de rotation avec la transformation alors on cherche V'
qui restent parallelesa V :

ViIIV o V=AV & MV=AV o (M-AHV=0

Cette équation possede une solution non triviale (V # 0) si le déterminant : det (M-Al ) =0

UrsS et vecteurs propres

Vel

Les racines de cette équation sont appelées valeurs propres de la matrice M et les vecteurs correspondant
sont appelés vecteurs propres.
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S — Dans le repere initial (XY ) muni de vecteurs unitaires (el,e2), la transformation d’un vecteur V a l'aide de la
,;"_", matrice de transformation M donne :
S
E V=MV
<P . P . ' 2 s ! '
= Avec une rotation d’axes de matrice A, les vecteurs V et V ' s'expriment par : U=AV ; U=AvV
: . . . T ! T yyr
2 soit par rotation inverse : V=AU ; V=AU
=
: . e e T ryt T
.E La transformation de V en V' a l'aide de M s’écrit : A U=MAU)
~
S
E d’ou la transformation de U en U’ : U =AMA'U ; U =DU
(1
() Si la rotation fait coincider les nouveaux axes avec les directions principales, alors la matrice D est diagonale.
o On s’intéresse alors dans la diagonalisation d’'une matrice a la description de la transformation linéaire dans

un nouveau repere. Ce qui est déduit par la rotation du repére initial aux direction principales.

Exemple
let2




Les tenseurs sont la généralisation des scalaires, des vecteurs et des matrices. Un tenseur est un mot générigue

d’entités mathématiques qui désigne une quantité physique.
Dans ce cours, on s’intéresse aux tenseurs cartésiens, le systeme de référence est donc un repere orthonormé
(OXYZ) qui peut subir une rotation de matrice A et se changer en un repere (0OX'Y'Z’).
(p)
- . ) Ordre  Entit¢  Dimension Nbr. Composantes Notation
- Un tenseur cartésien T d'ordre n est une 0 scalaire 5D 20— a
% fonction qui associe a un repére (2D/3D) un 3D 30 — |
- groupe de (2" /3"™) composantes réelles
ICI_J Tijk,, qui se transforment selon la relation 1 vecteur 2D 21=2 a;
. 1
suivante : 3D 3°=3
, 3 2 matrice 2D 22=4 aj j
T = Z Alimjanpk """ Tffk'" 3D 32=9
ijk-=1
s . . h ..
Les a;; désignent les cosinus directeurs des n 2b Zn Aijk-
nouveaux axes du repere (OX'Y'Z') par rapport . 3D 3
au repere initial (OXYZ). %] My My My KinKonclirae: X,
Tenseur d’ordre 1 Tenseur d’ordre 2 Vol [ma1 maz o Map| T=XKuRuXy o X[
4 3 S . ‘ Xm X 221X 8] ° sz
L . . . . Ny
V'r: (}',EV .r = (}',kf(}',rl-f? ; _mnl mn2 e mnn. ) ' ) “
! El . ki f,_;Z:l Jo _Un_ mexmlxm"xﬂm
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Symétrie

Un tenseur d’ordre n > 2 est dit symétrique par rapport a une paire d’indices si ses composantes
restent inchangées sous l'effet d’'une permutation de ces indices :

Vijk- =V jik-:+ : symétrie par rapportaij, et

Vijk-+- =V ikj -+ : symétrie par rapport a jk.

Antisymeétrie
Un tenseur d’ordre n > 2 est dit antisymétrique par rapport a une paire d’indices si ses
composantes changent de signe sous |'effet d’'une permutation de ces indices :
Vijk-+ ==V jik -+ : antisymétrie par rapportaij, et
Vijk-- ==V ikj -+« : antisymétrie par rapport a jk

Isotropie

Un tenseur est dit isotrope si ses composantes restent inchangées sous |'effet d’une rotation de
repere. Exemple : le tenseur identité | : | ' = AlAT = |
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Tenseurd’'ordre 0 Scalaire a,b, a 1 composante

Tenseurd'ordre 1 Vecteur a;, v;,V; 3 composantes

Tenseur d'ordre 2 Matrice a;j, vij, Tij 9 composantes

Tenseur d'ordre 3 Ajjk» Vijk» Tijk 27 composantes

Tenseur d'ordre 4 aijkl Vijkl, Dijkr 81 composantes X,

Convention de somme

X
Si on considere la somme : S=ax)+arxo+---+ apxp.
.. n n n
son écriture compacte usuelle est : S = Z aixj ou:S= Z ajxj oubien:S= Z AmXm
f:]_ j':]_ fH:].

Les indices i , j et m sont appelés indices muets dans le sens ou la valeur de S ne dépend pas de l'indice utilisé
dans I'expression de la somme. On peut simplifier d’avantage I'écriture de cette somme on adoptant la convention
de somme d’Einstien suivante :
Lorsqu’un indice est répété (apparait 2 fois) dans un méme terme, ¢a implique une somme sur l'indice répété
L'écriture précédente se simplifie donc en :

S= (i Xj
Remarque
Les expressions telles que ai bi xi ou l'indice apparait plus de deux fois sont exclues de la convention, le signe
X doit étre gardé pour désigner une somme des termes, sinon l'écriture est interprétée comme un seul terme.




/ Double somme \

_ o ajjxixj = (ajpxixy)+(apxixe)+(ajzxixs)
Lorsqu’un terme contient deux indices, chacun
apparait deux fois, une double somme sur les deux

indices est interprétée.

(@ x1x) + az x2x) + az x3x)

(@12x1x2 + azax2x2 + aza x3x2)

+ 4

(@13Xx1Xx3 + A23X2X3 + A33X3X3)

J

N
ﬂ\dice libre \

Un indice est dit indice libre s’il est répété de part et d’autre du signe égal (=) d’'une équation.
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L'écriture C; = A; + B; est interprétée comme suit : le vecteur C est la somme des vecteurs A et B.

L'écriture Y; = A;;X; comporte un indice libre i qui V1= @y,jXj = Ay X) + ajaXs + ajzxg
désigne 3 équations et un indice muet j qui désigne une

Y2 =dp jXj= a1 X] + dppXp + dp3 X3
somme.

y3=as jXj=azx)+aspxa+ azx

Cplicitement : /




Exemple
3et4

Gmbol de Kronecker

0 sii# ]
1. symétrie : 6;;= d;
2. isotropie : 0y;= ak;;j0;j = 0;j
3.trace : §;;= a1 + A9 +A33 =3
4. produit avec un vecteur : 6;;V;=V; ; 6;; V;=V; particulierement : e; = §;; ¢;
5. produit scalaire des vecteurs unitaires : e; - €; = 0;;

\ 6. trace d’une matrice : §;;4;; = A;; = Aj;

1 sii=j
Le symbole delta de Kronecker est défini comme suit: ;= { e I=

| 0 0
0 1 0
0 0 1

_/

/Symbole de Permutation

Le symbole de permutation E est défini comme suit :

1 siijkapparaissel

Eijk =4 —1 siijkapparaissel

1
Eijk = E(i - D= k) (k-1

0 siijkapparaissent dans un autre ordre

1t dans ['ordre 12312 ...
1t dans ['ordre 32132 ...

Toute interchange dans les indices entraine Les produits vectoriels des vecteurs eine; =& irex
’- . . o . re ] i — ©j
I'inversion de signe du symbole : unitaires s’écrivent comme suit : J !

\ Gijk = —Ekji = Ekij = —&ikj D’une maniere générale UV = &jru; H_,-Ey
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ﬁéﬁnition

La différentiation par rapport
au temps

Un champ tensoriel associe a chaque position M(xi ), et a chaque instant t, un tenseur Tij --«(M, t ).

La différentiation spatiale par rapport

~

La dérivée partielle seconde

a la coordonnée xp par rapport a xp et xq

aT;i... 0%4T;i...
I ou: opTij..- H

——— ou:dpq Tjj..
0xp0xg

ou bien: Tjj...,pq J

dxp
oubien: Tjj..,p

ﬁﬂérentiation d’un vecteur

V = V;e; est un vecteur

av oV aVs oV

= e + er+—ey=V;e;=
ot ot ' ot ¢ ar o vttiT

-

~

A est un tenseur d’ordre 0O (scalaire) et A
et B sont des tenseurs d’ordre 1

0(AA) oA dA
=—A

ot Ot +AE
d(A-B) 0A dB
ar "ot BtA G,
(ArB) dA 9B

37 :@IAB—I_Ahﬁ /




<P
S
©
(1
e
(3
(P
7 5]
e
h:‘»
g=
~—
=
<P
©
g
(1
S
O

On considére un tenseur d’ordre zéro (scalaire) @ fonction de la position : @ = @ (x1, x2, x3), et s une
courbe dans I'espace s = s(x1, x2, x3). La variation de @ le long de s est donnée par :

dqb _ aqb a.le 4 éh,b 6,1:2 + aqb 6,1:2 X}i
ds dx; s Ox» 0s Ox» Os

dx;/ ds sont les cosinus directeurs du vecteur unitaire u tangent a ds.

- dx; Odxz2 0Ox3 . |
= ‘ a
ds 0s Os S ; .
On introduit le vecteur des dérivées appelé operateur gradient : *t;? “‘*\, 2
0 0 0
V = XI

== ox] O0x» 0Xx3

Lorsqu’il est appliqué a @, la quantité V @ (aussi noté : grad @) est appelée le Gradient de @. La
différentielle de @ par rapport a ds peut donc s’écrire en fonction du produit scalaire entre le vecteur V@
et le vecteur unité u comme suit :

d¢ _ id =0ipu; =,; u;

=V u En utilisant la notation indicielle : ds
ds V=<0, d» 03>=0;e;
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ﬂe produit scalaire :

o 4 0 vl
V-V = < >4 U 3 di
9x1 ox, oxs 2 est aprz?le.dlvergence‘de Vg
U3 V et s’écrit en notation VV =0ivi=vj,;
dvy Ovp, O0vs indicielle comme suit :
\ B axl 6.xg 5.153 J
ﬂe produit vectoriel : \
ey ey e3
VaV = (01 02 03 est appelé rotationnel de
vy vz U3 V et s'écrit en notation &ijk0;ivjer oubien:&;jxv;,jex
ovy O0uvs ov; 0vg dv, 01 indicielle comme suit :
= — e) + - )82 + - ]83
0x3 0x)] ox; 0x?

\ dx2 0Xx3

/

/ Remarques:
La divergence est une scalaire et le rotationnel est un vecteur (rot V et div V) notations dans la littérature .

Le rotationnel d’un gradient est nul ValVp)=0 V¢

\La divergence d’un rotationnel est nulle V-(VaV)=0 VvV

~




Ve'cto'r field
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ﬂaplacien d’un scalaire vV’ ¢ ou Ad ou bien V3¢ \

la di g4 dient dplax En notation indicielle :
a divergence dun gradient — a¢p = <0d/ox1 8/0x2 0/0x3> { 0plox;
d’une fonction scalaire @ est le bl dxs Ap=0;p;=0;ip=,i
W Laplacien de la fonction 2p P P
= T 02 o o2
3 \ x{  Ox;  Oxj /
E ﬂiradlent d’un vecteur \
D
On défini le gradient d’un vecteur OVi1dx; OVildx, OVi/dxs
O it(—i-lnseur (‘iordre 1) Vla matrice A Sous forme matricielle : A=| dVuloxy 0Voldxy 0Voldxs
eleque: _ oV3/oxy dVi/ldxy 0V3/oxs
Aij=Vij
ﬂa divergence d’'une matrice \
La divergence d’une matrice (ou V) = %Tu _I_%Tu +%T13
tenseur dordre 2) T est un P o s
y ) y Sous forme matricielle : V=LVa= %1;21‘ + %?; + %Tfj

vecteur V tel que :

\

— aTEl aTﬂE aTEﬂ
VE o 5I1 + 6x2 + axg

Vi=Tij,j




Le théoreme de divergence de Gauss établie une relation entre l'intégrale sur le volume V des dérivées du
tenseur T et l'intégrale sur la surface S de la projection de T sur la normale n.

)
N AX,
D) f[Tfjk“.]l[Hq)dS:f Tfjk“.,q dV n
C S 1%
LD L'application de ce théoreme pour les cas des tenseurs les plus
% courants (matrice, vecteur et scalaire) s’écrit en utilisant les notations
indicielle et matricielle comme suit : "
2
oo

Un scalaire 0 : f;¢”id5=L¢EdV ou: LgbndS:Lgrad(de

/

ab)
&
D
-
@
D

X1

Th

Un vecteur T: ijnde=f Tj,jdV ou fT-ndS=f divi'dV
S V S v

et fgiijkadS=f g;‘jka,j dV ou fnn Td5=f rotTdV
S Vv S Vv

Une matrice M : fojdeS=f Mi_frj dV ou andS=f divMdV
S Vv S Vv
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Tandis que le théoreme de divergence de Gauss relie l'intégrale de volume a l'intégrale de surface fermée
délimitant le volume, le théoreme de Stokes lie l'intégrale sur une surface ouverte a une intégrale curviligne

sur la courbe délimitant la surface.

Ainsi si on nome S une surface ouverte avec C la courbe qui la
délimite et on considére un élément de courbe d de vecteur
unitaire u tel que ds u =dx; e;, alors pour tout vecteur V :

fn-[?nV)dS:f Vds
S C

sous forme indicielle :

f‘gfjk”ka!f dS:f V;;d.kfk
5 C

ds




